Combined Segmentation of Lidar Point Cloud and Registered Images
نویسندگان
چکیده
By fusing with other sensory data, especially high resolution imagery, Lidar can be good source of information for DEM extraction and feature extraction. Nowadays airborne Lidar system vendors such as Leica and Toposys and others are providing systems (Leica ALS50II, ALS60, Toposys FALCON II) with integrated camera capturing 3D point cloud and high resolution images simultaneously. The full potential of the integrated system has to be explored yet. This paper presents an automatic segmentation method based on the fused data of point cloud and imagery. The method automatically partitions the scene by taking into account spectral, spatial and elevation information of pixels. The segmented regions contain multiple cues of object, which can further be used for feature extraction. The experimental result shows that the combined segmentation is useful for better DEM filtering and object classification than using single source of data (Lidar or imagery).
منابع مشابه
Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملComprehensive Analysis of Dense Point Cloud Filtering Algorithm for Eliminating Non-Ground Features
Point cloud and LiDAR Filtering is removing non-ground features from digital surface model (DSM) and reaching the bare earth and DTM extraction. Various methods have been proposed by different researchers to distinguish between ground and non- ground in points cloud and LiDAR data. Most fully automated methods have a common disadvantage, and they are only effective for a particular type of surf...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملFusion of Airborne LiDAR Data and Satellite SAR Data for Building Classification
In an airborne photogrammetry, a geometrical modeling and object classification can be automated using color images. Stereo matching is an essential technique to reconstruct 3D model from images. Although, object classification methods are automated using height data estimated with the stereo matching, it is difficult to recognize construction materials, such as woods and concrete. The construc...
متن کاملTarget detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV
In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...
متن کامل